МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Димитровградский инженерно-технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ДИТИ НИЯУ МИФИ)

		«УТВЕРЖДАЮ»
		Заместитель руководителя
		Т.И. Романовская
~	>>	1.71. Томановская 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«ВЫЧИСЛИТЕЛЬНАЯ ФИЗИКА»

Специалі	ьность		03.03.02 Физика					
Квалифи	кация выпускник	a	Бакалавр					
Специали	изация		Медицинская физика					
Форма об	бучения	очная						
Выпуска	ющая кафедра	Кафедра общей и медицинской физики						
Кафедра-разработчик рабочей программы			ІМЫ	Кафедра об	щей и мед	нцинской физики		
C	Трудоемкость	Лекций,	Практич.	Лаборат.	CPC,	Форма промежуточ-		

Семестр	Трудоемкость час. (ЗЕТ)	Лекций, час.	практич. занятий, час.	лаоорат. работ, час.	СРС, час.	Форма промежуточ- ного контроля (экз./зачет/кр)
8	(144) 4	11	22	-	75	Экзамен
Итого	(144) 4	11	22	-	75	Экзамен

Димитровград 2021 г.

СОДЕРЖАНИЕ

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	3
2 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ	3
3 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
4 ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ	4
5 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	4
6 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	7
7 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО И ТЕКУЩЕГО КОНТРОЛЯ,	
ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ (АННОТАЦИЯ)	9
8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	13
9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	14
10 ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДО	В
И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ	15

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели освоения дисциплины: ознакомление студентов с задачами моделирования физических процессов и явлений, первоначальное ознакомление студентов с рядом основных вычислительных методов, применяемых при решении физических задач и при обработке данных эксперимента, способами их оптимальной реализации на компьютере, оценками погрешности результата проводимых расчетов, формирование практических навыков программирования основных математических алгоритмов применяемых при моделировании физических явлений.

Задачи: получение практических навыков программирования основных математических алгоритмов, применяемых при моделировании физических явлений.

2 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины направлен на формирование следующих компетенций и индикаторов их достижения в соответствии с ОС НИЯУ МИФИ и ООП ВО по специальности 03.03.02~ Физика.

Общепрофессиональные компетенции и индикаторы их достижения:

Оощепрофессиональные компе	тенции и индикаторы их достижения:
Код и наименование ОПК	Код и наименование индикатора достиженияОПК
ПК-3 Способен проводить сбор, обработку, анализ и обобщение научно-технической информации, передового отечественного и зарубежного опыта по тематике исследования; способен к подготовке обзоров на основе изучения и анализа полученной информации и собственного профессионального опыта	3-ПК-3 Знать: математические методы для разработки, анализа и численной реализации моделей компьютерных и информационных процессов для решаемых научных проблем и задач. У-ПК-3 Уметь: применять базовые знания в области математического моделирования для решения задач научно-исследовательской и профессиональной деятельности. В-ПК-3 Владеть: математическими методами для решения задач моделирования компьютерных и информационных процессов.
ПК-5 Способен использовать современные методы обработки, анализа и синтеза физической информации в избранной области физических исследований	3-ПК-5 Знать: фундаментальные основы вычислительной математики и вычислительных алгоритмов; современные подходы и важнейшие методы компьютерного моделирования. У-ПК-5 Уметь: разрабатывать и применять численные методы для решения задач научно-исследовательской и профессиональной деятельности. В-ПК-5 Владеть: навыками работы в системах программирования.

В результате изучения дисциплины студент бакалавра должен: Знать:

- назначение и применение прикладных программных продуктов в научных исследованиях, экспериментах;
- физические принципы, законы и теории.

VMeth

- применять численные методы при обработке результатов физического эксперимента, моделирования физических явлений, объектов;
- работать с современными программными продуктами общего и специального инженерноматематического назначения.

Владеть

- навыками использования информационных технологий для решения физических задач и применения численных методов, оценки и интерпретации результатов простейших физических экспериментов;
- навыками работы с пакетами прикладных математических и офисных программ;

- численными расчетами физических величин при решении задач и обработке результатов.

3 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина <u>Вычислительная физика</u> относится к <u>части, формируемой участниками образовательных отношений</u> модуля <u>по выбору</u> учебного плана по направлению подготовки <u>03.03.02</u> <u>Физика</u>.

4 ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспи-	Задачи воспитания (код)	Воспитательный потенциал дисциплин		
тания				
Профессиональное вос-	В18 формирование ответ-	Использование воспитательного потенциала		
питание	ственности за профессио-	дисциплин профессионального модуля для		
	нальный выбор, профессио-	формирования у студентов ответственности		
	нальное развитие и профес-	за свое профессиональное развитие посред-		
	сиональные решения	ством выбора студентами индивидуальных		
		образовательных траекторий, организации		
		системы общения между всеми участниками		
		образовательного процесса, в том числе с		
		использованием новых информационных		
		технологий.		

5 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Объем дисциплины

Общая трудоемкость (объем) дисциплины <u>Вычислительная физика</u> составляет 4 зачетных единиц (ЗЕТ), <u>144</u> академических часов.

Таблица 5.1 - Объём дисциплины по видам учебных занятий

	Всего,	Семестр
Вид учебной работы	зачетных	
Вид учесной рассты	единиц	8
	(акад. часов)	
Контактная работа с преподавателем		
в том числе:	33	33
– аудиторная по видам учебных занятий		
– лекции	11	11
– практические занятия	22	22
Самостоятельная работа обучающихся	75	75
в том числе:	75	75
 изучение теоретического курса 	35	35
домашние задачи	40	40
Вид промежуточной аттестации (зачет, экзамен)	Экзамен (36)	Экзамен (36)
Итого по дисциплине	144	144

Таблица 5.2 - Распределение учебной нагрузки по разделам дисциплины

	асында 3.2 Таспределение у тесной нагрузки по разделам дисциплины									
	Виды учебной нагрузки и их трудоемкость, включая самостоя-								стоя-	
	тельную работу студентов, акад. часы									
№ раздела	Наименование раздела дисци- плины	Лекции	Практические занятия	в том числе в фор- ме практической подготовки	Лабораторные ра- боты	в том числе в фор- ме практической подготовки	Самостоятельная работа	в том числе в форме практической подготовки	Всего часов	Формируемые индикаторы освоения компетенций
	1 семестр									
1	Предмет вычис-									
	лительной фи-	3	-				10		13	ПК-3, ПК-5
	зики									
2	Элементы чис-	4	11				30		45	ПК-3, ПК-5
	ленных методов	4	11				30		43	11K-3, 11K-3
3	Компьютерное									
	моделирование	4	11				35		50	ПК-3, ПК-5
	в физике									
	ИТОГО:	11	22				75		108	

5.2 Содержание дисциплины

Таблица 5.3 - Лекционный курс

			Труд	цоемкость, акад. часов
№ лек- ции	Номер раздела	Тема лекции и перечень дидактических единиц	всего	в том числе с использованием интерактивных образовательных технологий
		8 семестр		
		Предмет вычислительной физики		
1	1	Введение. Основные понятия об уравнениях математической физики. Математические модели физических объектов.	3	
2-3	2	Элементы численных методов Вычисление определенных интегралов, решение трансцендентных уравнений, задачи линейной алгебры, задача Коши для системы обыкновенных дифференциальных уравнений; уравнение теплопроводности, уравнение Лапласа и Пуассона. Понятия о краевых задачах и корректности их постановок.	4	
4-5	3	Компьютерное моделирование в физике Численный эксперимент в задачах механики, электричества и статистической физики (задача преследования, движение в центральном поле, негармонические колебания, фазовые портреты, визуализация полей системы зарядов, кинематическая модель газа, уравнение колебания струны)	4	
		Итого:	11	

Таблица 5.4 - Практические занятия

	•		Тру	удоемкость, акад. часов
№ заня- тия	Номер раздела	Наименование практического занятия и перечень дидактических единиц	всего	в том числе в форме практической подготов- ки
		8 семестр		
1-5	2	Элементы численных методов. 1. Вычисление определенных интегралов. 2. Решение трансцендентных уравнений. 3. Задача Коши обыкновенных дифференциальных уравнений. 4. Задачи линейной алгебры.	11	
6-10	3	Компьютерная обработка экспериментальных данных Обработать заданный набор экспериментальных данных методом Стьюдента, построить экспериментальные кривые методом наименьших квадратов. 1. Моделирование траектории движения тела, брошенного под углом к горизонту. 2. Динамика материальной точки. 3. Задача Кеплера. 4. Моделирование колебательных процессов. 5. Моделирование статических электрических и магнитных полей. 6. Моделирование случайных величин и событий. 7. Обработка экспериментальных данных. Интерполирование функции.	11	
		Итого:	22	

Таблица 5.5 – Лабораторные работы учебным планом не предусмотрены.

Таблица 5.6 – Самостоятельная работа студента

Раздел дисци- плины	Вид самостоятельной работы студента	Трудоемкость, часов
1	Подготовка к аудиторным практическим занятиям	10
1	Домашние задачи	
	Подготовка к аудиторным практическим занятиям	30
2	Подготовка к текущему контролю (тестированию)	
2	Домашние задачи	
	Подготовка к лекциям	
	Подготовка к аудиторным практическим занятиям	35
3	Подготовка к промежуточному контролю (контрольная	
3	работа)	
	Домашние задачи	

Подготовка к лекциям	
Итого:	75

6 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Образовательные технологии, используемые при реализации различных видов учебной работы и дающие наиболее эффективные результаты освоения дисциплины:

1. ЛЕКЦИЯ, мастер-класс (Лк, МК) — передача учебной информации от преподавателя к студентам, как правило с использованием компьютерных и технических средств, направленная в основном на приобретение студентами новых теоретических и фактических знаний. Наиболее распространенные виды (формы) организации учебного процесса для достижения определенных результатов обучения и компетенций:

Информационная лекция

Проблемная лекция – в отличие от информационной лекции, на которой сообщаются сведения, предназначенные для запоминания, на проблемной лекции знания вводятся как «неизвестное», которое необходимо «открыть». Проблемная лекция начинается с вопросов, с постановки проблемы, которую в ходе изложения материала необходимо решить. При этом выдвигаемая проблема требует не однотипного решения, готовой схемы которого нет. Данный тип лекции строится таким образом, что деятельность студента по ее усвоению приближается к поисковой, исследовательской. На подобных лекциях обязателен диалог преподавателя и студентов.

Лекция-визуализация — учит студента преобразовывать устную и письменную информацию в визуальную форму, выделяя при этом наиболее значимые и существенные элементы. На лекции используются схемы, рисунки, чертежи и т.п., к подготовке которых привлекаются обучающиеся. Проведение лекции сводится к связному развернутомукомментированию преподавателем подготовленных наглядных пособий. При этом важна логика и ритм подачи учебного материала. Данный тип лекции хорошо использовать на введения студентов в новый раздел, тему, дисциплину.

Лекция с разбором конкретной ситуации, изложенной в устно или в виде короткого диафильма, видеозаписи и т.п.; студенты совместно анализируют и обсуждают представленный материал.

- **2. САМОСТОЯТЕЛЬНАЯ РАБОТА** (СР) изучение студентами теоретического материала, подготовка к лекциям, лабораторным работам, практическим и семинарским занятиям, оформление конспектов лекций, написание рефератов, отчетов, курсовых работ, проектов, работа в электронной образовательной среде и др. для приобретения *новых теоретических и фактических знаний, теоретических и практических умений*.
- **3. КОНСУЛЬТАЦИЯ, тьюторство** (Конс., тьют.) индивидуальное общение преподавателя со студентом, руководство его деятельностью с целью передачи опыта, углубления *теоретических и фактических знаний*, приобретенных студентом на лекциях, в результате самостоятельной работы, в процессе выполнения курсового проектирования и др.
- **4. ПРАКТИЧЕСКОЕ ЗАНЯТИЕ** (Пр. зан.) решение конкретных задач (математическое моделирование, расчеты и др.) на основании теоретических и фактических знаний, направленное в основном на приобретение новых фактических знаний и теоретических умений.
- **5. СЕМИНАР, коллоквиум** (Сем., колл.) систематизация теоретических и фактических знаний в определенном контексте (подготовка и презентация материала по определенной теме, обсуждение ее, формулирование выводов и заключения), направленная в основном на приобретение новых фактических знаний и теоретических умений.

Типы практических занятий, используемых при изучении дисциплины:

Кейс-метод. Его название происходит от английского слова «кейс» – папка, чемодан, портфель (в то же время «кейс» можно перевести и как «случай, ситуация»). Процесс обучения с использованием кейс—метода представляет собой имитацию реального события, сочетающую в целом адекватное отражение реальной действительности, небольшие материальные и временные затраты и вариативность обучения. Учебный материал подается студентам виде проблем (кейсов), а знания приобретаются в результате активной и творческой работы: самостоятельного осуществ-

ления целеполагания, сбора необходимой информации, ее анализа с разных точек зрения, выдвижения гипотезы, выводов, заключения, самоконтроля процесса получения знаний и его результатов.

Основные виды образовательных технологий

Дистанционные образовательные технологии — образовательные технологии, реализуемые в основном с применением информационно-телекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников.

Для проведения занятий с использованием электронного образования и дистанционных образовательных технологий используются следующие образовательные технологии и средства освоения дисциплины:

- электронная информационно-образовательная среда НИЯУ МИФИ Режим доступа https://eis.mephi.ru/;
- платформа для проведения on-line конференций и вебинаров ZOOM Режим доступа https://zoom.us/;
 - файлообменная система Google Диск Режим доступа https://drive.google.com/;
- система обмена текстовыми сообщениями для мобильных и иных платформ с поддержкой голосовой и видеосвязи WhatsApp;
 - социальная сеть ВКонтакте;
 - электронная почта преподавателей и студентов.

Примерами применения дистанционных образовательных технологий являются занятия, на которых обучающийся не присутствует (скажем, по болезни), но выполняет задания и общается с преподавателем по электронной почте, или преподаватель консультирует обучающихся во внеурочное время через блог или сайт.

Виды дистанционного обучения: лекции (сетевые или видеозапись), виртуальные экскурсии, практические работы (семинары), проектная деятельность, телеконференции со специалистами, форумы, обсуждения, дискуссии, консультации индивидуальные или групповые, тестирование.

Кейсовая — технология основывается на использовании наборов (кейсов) текстовых, аудиовизуальных и мультимедийных учебно-методических материалов и их рассылке для самостоятельного изучения учащимся при организации регулярных консультаций у преподавателей.

Телевизионно-спутниковая технология основана на применении интерактивного телевидения: теле- и радиолекции, видеоконференции, виртуальные практические занятия и т.д.

Сетевые технологии используют телекоммуникационные сети для обеспечения учащихся учебно-методическим материалом и взаимодействия с различной степенью интерактивности между преподавателем и учащимся.

Информационные технологии – обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам (теоретически к неограниченному объему и скорости доступа), увеличения контактного взаимодействия с преподавателем, построения индивидуальных траекторий подготовки и объективного контроля и мониторинга знаний студентов.

Работа в команде – совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путем творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности.

Проблемное обучение – стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.

Контекстное обучение – мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением. При этом знания, умения, навыки даются не как предмет для запоминания, а в качестве средства решения профессиональных задач.

Обучение на основе опыта – активизация познавательной деятельности студента за счет ассоциации и собственного опыта с предметом изучения.

Индивидуальное обучение – выстраивание студентом собственной образовательной траектории на основе формирования индивидуальной образовательной программы с учетом интересов студента.

Междисциплинарное обучение – использование знаний из разных областей, их группировка и концентрация в контексте решаемой задачи.

Опережающая самостоятельная работа — изучение студентами нового материала до его изучения в ходе аудиторных занятий.

7 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО И ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ (АННОТАЦИЯ)

Фонд оценочных средств, включающий все виды оценочных средств, позволяющих проконтролировать сформированность у обучающихся компетенций и индикаторов их достижения, предусмотренных ОС НИЯУ МИФИ по направлению подготовки <u>03.03.02 Физика</u>, ООП и рабочей программой дисциплины <u>«Вычислительная физика</u>», приведен в Приложении.

Контроль освоения дисциплины производится в соответствии с Положением о рейтинговой системе оценки знаний студентов ДИТИ НИЯУ МИФИ.

Входной контроль по дисциплине.

• в форме тестирование;

Примерный вариант входного контроля:

1. Предел
$$\lim_{x\to 0} \frac{tg2x-sin2x}{x^2}$$
 равен 1) 0; 2) 2; 3) 4; 4)

2. Производная функции
$$y = \frac{\sin x - x \cos x}{\cos x + x \sin x}$$
 равна

1)
$$\frac{1}{(\cos x + x \sin x)^2}$$
 2) $\frac{x^2}{(\cos x + x \sin x)^2}$ 3) $\frac{\cos x + x \sin x}{(\cos x + x \sin x)^2}$ 4) $\frac{\cos x + x \sin x}{(x \cos x - \sin x)^2}$

3. Неопределенный интеграл $\int x^2 . \sqrt[3]{1 + 4x^3} dx$ равен

1)
$$\frac{\sqrt[4]{(1+4x^3)^3}}{16} + c$$
 2) $\frac{\sqrt[3]{(1+4x^3)^4}}{16} + c$ 3) $\frac{(1+4x^3)^{\frac{5}{3}}}{12} + c$ 4) $\frac{3}{16}(1+4x^3)^{\frac{4}{3}}$

4. Интеграл $\int xe^{2x}dx$ равен

1)
$$\frac{x-1}{2}e^{2x} + c$$
 2) $\frac{2x+1}{4}e^{2x} + c$ 3) $\frac{2x-1}{4}e^{2x} + c$ 4) $\frac{2x-1}{8} + c$

5. Дана функция
$$U = x^{\frac{y}{t}}$$
, тогда U_t равна 1) $\frac{y}{t} x^{\frac{y}{t-1}}$ 2) $x^{\frac{y}{t}} \ln x$ 3) $-\frac{y}{t^2} x^{\frac{y}{t}} \ln t$

$$4) \frac{y}{t} x^{\frac{y-1}{t}}$$

- 6. Базы данных это:
- 1) набор сведений, организованный по определенным правилам и представленный в виде, пригодном для обработки автоматическими средствами
 - 2) программные средства, позволяющие организовывать информацию в виде таблиц
 - 3) программные средства, осуществляющие поиск информации
- 4) программно-аппаратный комплекс, предназначенный для сбора, хранения, обработки и передачи информации
 - 7. Присоединение частицы НЕ к высказыванию это:
 - 1) дизъюнкция
 - 2) конъюнкция
 - 3) импликация
 - 4) эквивалентность
 - 5) инверсия
 - 8. Файл это:
 - 1) единица измерения информации
 - 2) программа или данные на диске, имеющие имя
 - 3) программа в оперативной памяти
 - 9. Вся информация может обрабатываться компьютером, если она представлена:

- 1) в двоичной знаковой системе
- 2) в десятичной знаковой системе
- 3) в виде символов и чисел
- 4) только в виде символов латинского алфавита
- 5) текст, распечатанный на принтере
- 10. Количество битов, воспринимаемое микропроцессором как единое целое это:
- 1) разрядность процессора
- 2) тактовая частота
- 3) объем внутренней памяти компьютера
- 4) производительность компьютера.

Текущий контроль студентов производится в дискретные временные интервалы лектором и преподавателями, ведущими практические занятия по дисциплине в следующих формах:

• Письменные опросы;

Примерные вопросы к письменному опросу:

- 1. Метод Гаусса-Зейделя.
- 2. Метод касательных (Ньютона) приближенного решения нелинейных уравнений.
- 3. Численное интегрирование.
- 4. Аппроксимация функций методом наименьших квадратов.
- 5. Метод Эйлера решения ОДУ.
- 6. Квадратурная формула Симпсона (парабол).
- 7. Интерполяционный полином Лагранжа.
- 8. Задача Коши.
- 9. Метод Рунге-Кутта четвертого порядка решения ОДУ.
- 10. Метод дихотомии приближенного решения нелинейных уравнений.

Отдельно оцениваются личностные качества студента (аккуратность, исполнительность, инициативность) – работа у доски, своевременная сдача тестов, отчетов к лабораторным работам и письменных домашних заданий.

Промежуточный контроль студентов производится в следующих формах:

• контрольная работа.

Примерные задачи к контрольной работе:

1. Погрешность непосредственного измерения. Величина измерялась 8 раз, и были получены значения, приведенные в табл. 1. Считая ошибку случайной; обусловленной разбросом полученных значений, определите абсолютную (доверительный интервал с вероятностью 95%) и относительную ошибки в процентах

Задания по вариантам

Замер №	1	2	3	4	5	6	7	8
Комп №								
0	5,05	5,00	5,05	5,10	5,00	4,95	4,90	5,00
1	1,01	1,00	1,01	1,02	1,00	0,99	0,98	1,00
2	10,1	10,0	10,1	10,2	1,00	9,9	9,8	10,0
3	101	100	101	102	100	99	98	100
4	$1,01\cdot10^3$	$1,00\cdot10^3$	$1,01\cdot10^{3}$	$1,02\cdot10^3$	$1,00.10^3$	$0,99 \cdot 10^3$	$0.98 \cdot 10^3$	$1,00\cdot10^3$

2. В лабораторной работе проверялся закон Стефана–Больцмана $R = \sigma T^n$ на следующей установке (рис.). Потребляемая лампой накаливания мощность (следовательно, и излучаемая мощность: P = RS) измерялась амперметром и вольтметром, а температура нити — оптическим пирометром. Излучающая площадь нитей накаливания равна 1 см². В таблице приведены значения мощности P = IU, полученные при разных токах, и соответствующие температуры нити:

Бригада	1		2		3		4	
№ опыта	P, BT	<i>T</i> , K	P, BT	Т, К	P, BT	<i>T</i> , K	P, BT	<i>T</i> , K

1	10	950	15	1051	20	1130	25	1196
2	30	1238	35	1290	40	1337	45	1381
3	50	1400	55	1439	60	1475	65	1511
4	70	1519	75	1551	80	1582	85	1613
5	90	1614	95	1642	100	1670	105	1698
6	110	1693	115	1720	120	1746	125	1772
7	130	1763	135	1788	140	1813	145	1837
8	150	1825	155	1849	160	1872	165	1896
9	170	1881	175	1904	180	1927	185	1950
10	190	1932	195	1954	200	1977	205	1999
11	210	1979	215	2001	220	2023	225	2045

3. Закон Стефана — Больцмана. Какова мощность излучения W(T) абсолютно черного тела с площади 1 см² за время, равное 1 с, в видимом (от 0,38 до 0,78 мкм) и в инфракрасном (от 0,78 мкм до 25 мкм) диапазонах при температурах, указанных в табл. 1.

Таблица 1 - Варианты заданий

Бригада	1; 5	2; 6	3; 7	4; 8
T_1 , K	1000	1100	1200	1300
T_2 , K	2000	2100	2200	2300

4. Для видимого и инфракрасного диапазонов подберите оптимальное число разбиений n интервала длин волн $\Delta\lambda = \lambda_2 - \lambda_1$. Найдите мощности $W_{\text{вид}}(T_1)$, $W_{\text{вид}}(T_2)$, $W_{\text{ик}}(T_1)$, $W_{\text{ик}}(T_2)$. Заполните таблицу 2.

Таблица 2 - Мощность W(T), излучаемая АЧТ, с площади 1 см²

Диапазон длин	Видимый	Инфракрасный	
волн, мкм	$0.38 \div 0.78$	$0.78 \div 25$	$W_{\text{ик}}(T)/W_{\text{вид}}(T),$
Число разбиений п	20	64	
$T_1 = 1200 \text{ K}$	19	1,2E5	0.063E5
$T_2 = 2200 \text{ K}$	4,2E4	1,3E6	0,309E2
$W(T_2)/W(T_1)$	2210,5	10,8	

- 5. Тело брошено под углом к α к горизонту с высоты h с начальной скоростью v_0 . Составить математическую модель полета.
- А) При h=0 найти расстояние, на которое улетит тело, максимальную высоту, на которую поднимется, время полета. Построить график траектории полета.
- Б) При h=H/4, h=H/2, h=H найти расстояние, на которое улетит тело, максимальную высоту, на которую поднимется, время полета. Построить графики траекторий.
- В) При h=H/4, h=H/2, h=H выяснить, перелетит ли тело через забор высоты H1, находящийся на расстоянии L по горизонтали от точки броска.

Промежуточный контроль по результатам 8 семестра по дисциплине проходит в форме письменного экзамена (теоретические вопросы и решения задач).

Пример заполненного экзаменационного билета:

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Димитровградский инженерно-технологический институт –

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ДИТИ НИЯУ МИФИ)

Физико-технический факультет Кафедра общей и медицинской физики

Направление подготовки (специальность)

Дисциплина Вычислительная физика

03.03.02 Физика

Форма обучения – очная

Семестр 8

Профиль подготовки «Медицинская физика»

Экзаменационный билет № 1

- 1. Метод Рунге-Кутта четвертого порядка решения ОДУ.
- **2.** Задание 1: Тело брошено под углом к α к горизонту с высоты h с начальной скоростью v_0 .

Составить математическую модель полета.

- A)При h=0 найти расстояние, на которое улетит тело, максимальную высоту, на которую поднимется, время полета. Построить график траектории полета.
- Б)При h=H/4, h=H/2, h=H найти расстояние, на которое улетит тело, максимальную высоту, на которую поднимется, время полета. Построить графики траекторий.
- В) При h=H/4, h=H/2, h=H выяснить, перелетит ли тело через забор высоты H1, находящийся на расстоянии L по горизонтали от точки броска.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень основной и дополнительной учебной литературы

Таблица 8.1 – Обеспечение дисциплины основной и дополнительной литературой по дисциплине

N п/ п	Автор	Название	Место издания	Наименование издательства	Год издания	Количе- ство экземпля-
						ров
	I	T .	Основная литера			,
1	Бахвалов Н.С., Жидков Н.П., Кобельков Г.М.	Численные ме- тоды	Москва	Издательство "Лаборатория знаний" (ра- нее "БИНОМ. Лаборатория знаний")	2020	[https://e.l anbook.co m/book/12 6099]
2	Демидович Б. П., Марон И. А., Шувалова Э. 3.	Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения	Москва	«Лань»	2022	[https://e.l anbook.co m/book/21 0437]
		* 1	олнительная лит	ература		•
3	Шевцов Г. С., Крюкова О. Г., Мызникова Б. И.	Численные методы линейной алгебры	Москва	«Лань»	2022	[https://e.l anbook.co m/book/21 0647]
4	Маликов Р.Ф.	Основы математическог о моделирования	Москва	«Юрайт»	2023	[https://ura it.ru/viewe r/osnovy- ma- tematich- eskogo- modeliro- vaniya- 520383#pa ge/1]

8.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень рекомендуемых Интернет сайтов:

- 1. ЭБС «Лань» на сайте.
- 2. ЭБС НИЯУ МИФИ на сайте http://library.mephi.ru/
- 3. ЭБС «Консультант студента на сайте https://www.studentlibrary.ru/
- 4. https://urait.ru/ (Образовательная платформа Юрайт)
- 5. https://www.studentlibrary.ru/ (Электронная библиотечная система "Консультант студента")
 - 6. http://www.knigafund.ru/ Электронно-библиотечная система «КнигаФонд»
 - 7. ftp://elib.diti-mephi.ru Электронно-библиотечная система ДИТИ НИЯУ МИФИ

Таблица 8.2 – Рекомендуемые электронно-библиотечные системы

No	Наименование ресурса	Тематика
1	ЭБС «Лань»	Физико-математические науки
		Технические науки
2	ЭБС НИЯУ МИФИ	Физико-математические науки
		Технические науки
		·
3	ЭБС «Консультант студента	Физико-математические науки
		Технические науки

8.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Таблица 8.3 – Перечень лицензионного и свободно распространяемого программного обеспечения

No	Наименование	Краткое описание
1	MS Office (Word, Excel, Power Point)	оформление текста, создание
		презентаций
2	Браузеры: Internet Explorer 10, Internet Explorer 9, Internet	Специальные программы для
	Explorer 8, FireFox 10, Safari 5, Google Chrome 17	просмотра веб-страниц, поиска
		контента, файлов и их катало-
		гов в Интернете
3	https://docs.google.com/	оформление текста, создание
	Документы, Таблицы, Формы, Презентации	презентаций

Таблица 8.4 – Перечень профессиональных баз данных и информационных справочных систем

№	Наименование	Тематика	Электронный адрес
1	Единое окно доступа к образовательным ресурсам. Физика	Физико-математические науки	httgs://og-ti.ru/
2	Журнальный портал ФТИ им. А.Ф. Иоффе	Техническая физика	https://journals.ioffe.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

No	Наименование помещений для проведения всех	Адрес (местоположение) помещений для
п/ п	видов учебной деятельности, предусмотренной	проведения всех видов учебной деятельно-
	учебным планом, в том числе помещения для	сти, предусмотренной учебным планом
	самостоятельной работы, с указанием перечня	
	основного оборудования, учебно-наглядных	
	пособий и используемого программного обеспе-	
	чения	
1	Учебная аудитория для проведения занятий №	433507, Ульяновская область, г. Димитров-
	101	град, ул. Куйбышева, д. 297
	посадочных мест — 16; площадь 59.42 кв.м.	
	Специализированная мебель: учебная доска – 1	
	шт., стол студенческий – 12 шт., стол преподава-	
	тельский – 2 шт., стол компьютерный – 12 шт.,	
	стулья – 31 шт., кондиционер – 1 шт.	
	Технические средства обучения: компьютеры (мо-	
	нитор, системный блок, клавиатура, мышка) – 10	
	шт., проектор – 1 шт., экран – 1 шт.	
	Программное обеспечение: ОС Windows XP,	
	Microsoft Office 10	
<u> </u>	I	

10 ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с:

- Конституцией Российской Федерации. Принята всенародным голосованием 12.12.1993 с изменениями, одобренными в ходе общероссийского голосования 01.07.2020 ст. 43 http://www.consultant.ru/document/cons_doc_LAW_28399/;
- Федеральным законом «Об образовании в Российской Федерации» от 29.12.2012 №273-ФЗ (ред. от 17.02.2021), ст. 5, 71, 79 http://www.consultant.ru/document/cons_doc_LAW_140174/;
- Федеральным законом от 24.11.1995 №181-ФЗ (ред. от 07.03.2017) «О социальной защите инвалидов в Российской Федерации» Глава III. Ст. 9. ,Ст. 11. Глава IV. Ст. 1 http://www.consultant.ru/document/cons_doc_LAW_8559/;
- Федеральным законом «О ратификации Конвенции о правах инвалидов» от 03.05.2012 №46-Ф3 http://www.consultant.ru/document/cons doc LAW 129200/;
- Порядком организации и осуществления образовательной деятельности по образовательным программам программам бакалавриата, программам специалитета, программам магистратуры (Приказ Минобрнауки РФ от 05.04.2017 № 301);
- Положением об организации обучения студентов-инвалидов и студентов с ограниченными возможностями здоровья в НИЯУ МИФИ, утвержденным 29.08.2017 г. https://mephi.ru/content/public/uploads/files/education/docs/pl 7.5-15 ver 2.2 0.pdf;
- Методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (приложение к письму Минобрнауки от 16 апреля 2014 г. №05-785) http://www.consultant.ru/document/cons doc LAW 159405/73804ce294dfe53d86ae9d22b5afde310dc5 06f7/;
- Требованиями к организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в профессиональных образовательных организациях, в том числе оснащенности образовательного процесса» (приложение к письму Минобрнауки от 18 марта г. №06-281) http://www.consultant.ru/document/cons doc LAW 57872/7d7f56523837be788b6cfa5578482a6b17891 8d3/ .

Дополнения и изменения в рабочей программе дисциплины на 20_/20_ уч.г.

Внесенные изменения на 20__/20__ учебный год

В рабочую программу вносятся след		вется отметка о нецеле	есообразности
внесения каких-либо изменений на д	данный учебный год:		
		-	
Рабочая программа пересмотрена на	а заселании кафелры		
r dee ian iiperpainia iiepeemerpena iie	о заседанни кафедры		
(дата, но	мер протокола заседания кафедры,	подпись	зав. кафедрой)
СОГЛАСОВАНО:			
Заведующий выпускающей кафедро	й		
		-	-
наименование кафедры	личная подпись	расшифровка подписи	дата
Руководитель ООП,			
ученая степень, должность	munda nogunce	nacuudnoeva nodnucu	dama