МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Димитровградский инженерно-технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ДИТИ НИЯУ МИФИ)

	«УТВ	ВЕРЖДАЮ»
	Заместит	ель руководителя
		Т.И. Романовская
«	>>	20г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физические основы и технические средства медицинской визуализации»

Направление подготовки	03.04.02
Квалификация выпускника	Магистр
Магистерская программа	Медицинская физика
Форма обучения	очная
Выпускающая кафедра	общей и медицинской физики
Кафедра-разработчик рабочей программы	общей и медицинской физики

Семестр	Трудоемкость час. (ЗЕТ)	Лекций, час.	Практич. занятий, час.	Лаборат. работ, час.	СРС, час.	Форма промежуточ- ного контроля (экз./зачет/кр)
3	216(6)	17	34	1	129	экзамен (36)
Итого	216(6)	17	34	-	129	экзамен (36)

СОДЕРЖАНИЕ

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	3
2 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ	
3 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
4 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	8
5 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО И ТЕКУЩЕГО КОНТРОЛЯ,	
ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (АННОТАЦИЯ)	10
6 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	12
7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	14
8 ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДОЕ	3 И
ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ	15

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: ознакомление с физическими основами и основными принципами визуализации, используемыми в медицине, и их применения в биомедицинских и фундаментальных исследованиях на живых системах и клинической медицине.

Задачи освоения дисциплины:

- формирование знаний об основах цифровой обработки сигналов с упором на проблемы в биомедицинских исследованиях и клинической медицине.
- получение знаний об основных принципах визуализации, используемых в медицине, и их применения в медицинской диагностике, терапии и в фундаментальных исследованиях на живых системах.
- научиться интерпретировать данные полученные разными методами с точки зрения физических принципов лежащих в основе визуализации;
- выработка навыков самостоятельной оценки возможностей современных ядерно-физических методов, необходимых для дальнейшей работы по специальности.

2 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины направлен на формирование следующих компетенций и индикаторов их достижения в соответствии с ОС НИЯУ МИФИ и ООП ВО по направлению подготовки. **Профессиональные компетенции и индикаторы их достижения:**

Задача профессиональной деятельности Объект или область знания		Код и наименова- ние ПК	Код и наименование индикатора достижения ПК	Основание (профессиональный стандарт, анализ опыта) / Обобщенные трудовые функции
	Тип зад		ной деятельности: проектный	
Способность само- стоятельно ставить конкретные задачи	использо-	ПК-2 Способен принимать уча- стие в разработке	3-ПК-2 знать современные направления исследований в своей профессиональной об-	Профессиональный стандарт «24.078. Специалист-исследо-
научных исследований в области фи-	точников неионизи-	новых методов и методических	ласти У-ПК-2 уметь анализировать	ватель в области ядерно-энергетиче-
зики и решать их с помощью современной аппаратуры	ионизиру-	подходов в научно-иннова- ционных иссле-	и выявлять перспективные направления в разработке новых методов и методических	ских технологий» В.7. Выработка направлений приклад-
и информационных технологий с ис-		дованиях и инженерно-технологи-	подходов в научно-инновационных исследованиях и инже-	ных научно-исследо- вательских и опытно-
пользованием новейшего отечественного и зару-		ческой деятель- ности	нерно-технологической дея- тельности В-ПК-2 владеть современ-	конструкторских работ по совершенствованию ядерно-энерге-
бежного опыта			ными методиками и подходами в решении научно-инновационных и инженерно-тех-	тических технологий и руководство деятельностью подчинен-
			нологических задач в профессиональной сфере	ного персонала по их выполнению
			гельности: научно-исследовател	
Способность самостоятельно ставить		планировать и ор-	3-ПК-1.1 знать свойства и структуру физических про-	стандарт «40.008.
конкретные задачи научных исследова-	точников	* *	цессов, происходящих в различных средах; теоретические	низации и управле-
ний в области физики и решать их с помощью	неионизи- рующих и	осуществлению научных исследо- ваний в	основы и базовые представления научного исследования в выбранной области	-

современной аппа-	ионизиру-	избранной о	бла-	фундаментальной и(или)экс-	конструкторскими ра-
				периментальной физики; ос-	
ционных техноло-				новные со-временные методы	
гий с использова-		теоретическо		расчета объекта научного ис-	Обобщенная трудовая
нием новейшего				следования, использующие	1 2
отечественного и				передовые инфокоммуника-	
зарубежного опыта					руководства разработ-
		базы	`	У-ПК-1.1 уметь определять	
				цели научной работы и спо-	
				собы их последовательного	и этапах выполнения
				достижения, грамотно распре-	работ
				делять рабочее время на до-	
				стижение поставленных це-	
				лей; управлять трудовыми ре-	
				сурсами и работой персонала	
				в малой научно-исследова-	
				тельской группе	
				В-ПК-1.1 владеть навыками	
				организации эффективной	
				совместной работы при прове-	
				дении теоретических и экспе-	
				риментальных исследований;	
				прикладными программами	
				для изучения различных фи-	
				зических процессов в элек-	
				тронных устройствах и биоло-	
				гических объектах	

В результате изучения дисциплины студент магистратуры должен:

Знать:

основные процессы взаимодействия ионизирующего излучения с биотканями организма человека;

физические принципы различных методов получения изображений в медицине, особенности и ограничения этих методов;

фундаментальные основы физики живых систем, физико-химической биологии и применения диагностического и лечебного оборудования;

основные методики измерений и математической обработки результатов при радиоизотопной диагностике.

Уметь:

интерпретировать данные полученные разными методами с точки зрения физических принципов лежащих в основе визуализации;

понимать, излагать и критически анализировать базовые медико-биологические понятия, пользоваться теоретическими основами, основными понятиями, законами и моделями медицинской электроники;

обрабатывать и анализировать экспериментальную и теоретическую медико-биологическую информацию;

Владеть:

методологией методов визуализации в применении к задачам медицинской диагностики и изучением их функции;

навыками самостоятельной оценки возможностей современных физических методов, необходимых для дальнейшей работы по специальности.

3 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Дисциплина <u>«Физические основы и технические средства медицинской визуализации»</u> относится к <u>части, формируемой участниками образовательных отношений профессионального</u> дисциплины (модули) по выбору учебного плана по направлению подготовки <u>03.04.02 Физика</u>.

Дисциплина реализуется кафедрой общей и медицинской физики ДИТИ НИЯУ МИФИ.

3.1 Объем дисциплины

Общая трудоемкость «Физические основы и технические средства медицинской визуализации» составляет $\underline{6}$ зачетных единиц (3ET), $\underline{216}$ академических часов.

Таблица 3.1 – Объём дисциплины по видам учебных занятий

	Всего,	Семестр
Вид учебной работы	зачетных единиц	3
	(акад. часов)	3
Контактная работа с преподавателем		
в том числе:		
– аудиторная по видам учебных занятий	51	51
– лекции	17	17
– практические занятия	34	34
– лабораторные работы	0	0
Самостоятельная работа обучающихся		
в том числе:	129	129
 проработка конспекта лекции 	30	30
 подготовка к практическому занятию и ее последующая доработка 	30	30
– подготовка к коллоквиуму	20	20
– составления глоссария	20	20
 подготовка информационного проекта, реферата 	29	29
Вид промежуточной аттестации – экзамен	36	36
Итого по дисциплине	216	216
в том числе в форме практической подготовки	-	-

Таблица 3.2 – Распределение учебной нагрузки по разделам дисциплины

	Виды учебной нагрузки* и их трудоемкость, включая са-									
			мостоятельную работу студентов, акад. часы							
№ раздела	Наименование раздела дисциплины	Л	ПЗ	в т.ч. ПД	ЛР	в т.ч. ПД	СР	в т.ч. ПД	Всего часов	Формируе- мые индика- торы освое- ния компе- тенций
1	Методы медицинской визуализации	4	12	-	0	-	25	-	41	
2	Рентгенодиагностика	4	0	-	0	-	30	-	34	3-ПК-2
3	Магнитно-резонансная томография	3	6	-	0	-	25	-	34	У-ПК-2 В-ПК-2
4	Радионуклидная диа- гностика	4	0	-	0	-	30	-	34	3-ПК-1.1 У-ПК-1.1
5	Другие методы диагно- стики		16	-	0	-	19	-	37	В-ПК-1.1
	Подготовка к экзамену	0	0	0	0	0	0	0	36	
	Итого	17	34	0	0	0	129	0	216	

^{*}Л – лекции, Π З – практические занятия, Π Р – Лабораторные работы, Π СР – самостоятельная работа, в т.ч. Π Д - в том числе в форме практической подготовки.

3.2 Содержание дисциплины

Таблица 3.3 – Лекционный курс

№ лек- ции	Но- мер раз- дела	Тема лекции	Трудоем- кость, акад. часов
1	1	Формирование изображений и понятие реконструкции изображений. Цифровая обработка сигналов и изображений Цифровые сигналы и изображения. Качество изображений. Базовые операции с изображениями. Геометрические преобразования. Фильтры. Манипуляция с контрастом и шкалой серого цвета	4
2	2	Рентгенодиагностика Физические механизмы взаимодействия рентгеновского излучения с веществом Рентгеновские приборы Методы рентгенодиагностики Компьютерная томография Физические принципы получения рентгеновских планарных изображений. Физика взаимодействия рентгеновских лучей с тканями. Связь контраста и энергии рентгеновских лучей. Аппаратура для получения рентгенодиагностические системы. Качество и методы улучшения изображений в системах рентгенодиагностики. Принцип получения изображений в рентгеновской трансмиссионной компьютерной томографии. Односрезовый, спиральный и многосрезовые методы КТ. Метод двойной энергии. Клинические применения рентгеновской компьютерной томографии.	4
3	3	Магнитно-резонансная томография Физические основы МРТ Конфигурация МР-томографа Виды и качество изображений Построение изображения Основные принципы формирования изображений. Показатели качества изображения Градиенты. Считывающий и фазокодирующий градиент. К-пространство и его заполнение. Частото-селективные импульсы. Основные МРТ последовательности. ЭПР томография	3
4	4	Радионуклидная диагностика Физические основы получения изображений с помощью радиоизотопов Физические основы радионуклидной диагностики Гамма камера Однофотонная эмиссионная томография Позитронно-эмиссионная томография Позитронно-эмиссионная томография Позитронно-эмиссионная томография, совмещенная с КТ или МРТ	4
5	5	Физические основы ультразвуковых методов диагностики Краткие сведения о физиологической акустике. Основы физики ультразвука. Генерация акустических полей. Основы УЗ-визуализации Действие ультразвука на биологические объекты. Взаимодействие тканей организма с упругими волнами Изучение основных принципов ультразвуковой визуализации Допплерография	2
		Итого:	17
		в том числе с использованием интерактивных образовательных технологий	-

Таблица 3.4 – Практические занятия

No	Но-		
за-	мер	Наименование практического занятия	Трудоемкость, акад. ча-
ня-	раз-		сов
КИТ	дела		
1	1	Классификация методов медицинской визуализации	4
		Методы медицинской визуализации – основополагающие физиче-	
		ские принципы. Основные характеристики диагностических изоб-	
		ражений – пространственное разрешение, контраст, глубина. Об-	
		щая схема устройств для получения диагностических изображе-	
		ний. Классификация методов медицинской визуализации. Особен-	
		ности рентгенологического исследования. Радионуклидные ме-	
		тоды исследования. Понятия принцип работы, области	

		D 1 0	
		применения. Рентгеновская компьютерная томография. Спираль-	
		ная компьютерная томография. Принцип работы, применение в	
		медицине.	
2	1	Методы формирования изображений. Понятие некорректной за-	4
		дачи. Существование решения. Устойчивость решения. Решение	
		обратных задач методом Тихонова. Регуляризация решения урав-	
		нения типа свертки. Винеровская оптимальная фильтрация.	
3	1	Свойства преобразования Радона. Связь преобразования Радона и	4
		преобразования Фурье. Методы восстановления двумерных томо-	
		грамм по одномерным проекциям. Дискретные алгоритмы рекон-	
		струкции томограмм. Дискретное обратное проецирование. Ите-	
		рационные алгоритмы.	
4	3	Магнитно-резонансная томография	6
		Компьютерная томография, принцип работы томографа, шкала	
		Хаунсфильда. Преимущества и недостатки. Магнитно-резонанс-	
		ная томография, физические основы метода и его преимущества.	
		Зависимость МР-сигнала от исследуемой ткани. Интерпритация	
		МРТ изображений, их количественная оценка.	
5	5	Визуализации с помощью ультразвука.	4
_	-	Физические принципы визуализации с помощью ультразвука.	•
		Физика ультразвуковых волн в живом организме. Особенности	
		аппаратурной реализации. Доплер-УЗИ. Получение трехмерных	
		изображений. Возможности дальнейшей оптимизации изображе-	
		ний, контроль качества. Безопасность и биологические эффекты.	
6	5	Оптические и флуоресцентные методы визуализации.	4
U	3	Мультиспектральная оптоакустическая томография. Новые обла-	4
		сти применения. Сравнение различных методов визуализации.	
		Методы автофлуоресцентной диагностики. Методы флуорес-	
		центной диагностики с использованием флуоресцентных марке-	
		ров. Лазерная сканирующая микроскопия. Методы оптической	
		когерентной томографии (ОКТ), принцип получения изображе-	
		ний, виды ОКТ зондов, примеры клинического использования.	
		Мультимодальность в оптической когерентной томографии. По-	
		ляризационно-чувствительная ОКТ, кросс-поляризационная	
		ОКТ, преимущества перед структурной ОКТ. Примеры использо-	
		вания в медицине.	
7	5	Алгоритмы синтеза голограмм трехмерных объектов. Выбор спо-	4
		соба представления поля от объекта в зависимости от геометриче-	
		ских параметров голографической схемы. Визуализация трехмер-	
		ных объектов с помощью синтезированных голограмм. Оптиче-	
		ский синтез голограммы. Получение трехмерных изображений	
		внутренней структуры объектов. Голографическая томография.	
8	5	Модуляция оптического излучения живыми микрообъектами. Фи-	4
		зическая модель клетки. Биофизическая модель живой клетки.	
		Метод геометрической оптики. Методы микроскопии биообъек-	
		тов. Флуоресцентная (люминесцентная) микроскопия. Системы	
		автоматизированной обработки изображений микрообъектов. Из-	
		мерение оптической плотности клетки (денситометрия). Измере-	
		ние цветовых характеристик изображений микрообъектов (коло-	
		риметрия). Измерение геометрических размеров клеток (морфо-	
		метрия). Микротомограф на основе интерференционного микро-	
		скопа Линника. Конфокальный томографический интерференци-	
		онный микроскоп. Интерференционный томографический микро-	
		скоп с зеркальным иммерсионным конденсором.	
L		Итого:	34
		в том числе в форме практической подготовки	

Таблица 3.5 – Лабораторные работы Учебным планом не предусмотрены.

Раздел дисци- плины	№ п/п	Вид самостоятельной работы студента	Трудоемкость, часов
1-4	1	проработка конспекта лекции	30
	2	подготовка к практическому занятию и ее последующая доработка	30
	3	подготовка к коллоквиуму	20
	4	составления глоссария	20
	5	подготовка информационного проекта, реферата	29
		ИТОГО:	129

4 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Образовательные технологии, используемые при реализации различных видов учебной работы и дающие наиболее эффективные результаты освоения дисциплины:

1. ЛЕКЦИЯ, мастер-класс (Лк, МК) – передача учебной информации от преподавателя к студентам, как правило с использованием компьютерных и технических средств, направленная в основном на приобретение студентами новых теоретических и фактических знаний. Наиболее распространенные виды (формы) организации учебного процесса для достижения определенных результатов обучения и компетенций:

Информационная лекция.

Проблемная лекция – в отличие от информационной лекции, на которой сообщаются сведения, предназначенные для запоминания, на проблемной лекции знания вводятся как «неизвестное», которое необходимо «открыть». Проблемная лекция начинается с вопросов, с постановки проблемы, которую в ходе изложения материала необходимо решить. При этом выдвигаемая проблема требует не однотипного решения, готовой схемы которого нет. Данный тип лекции строится таким образом, что деятельность студента по ее усвоению приближается к поисковой, исследовательской. На подобных лекциях обязателен диалог преподавателя и студентов.

Лекция-визуализация – учит студента преобразовывать устную и письменную информацию в визуальную форму, выделяя при этом наиболее значимые и существенные элементы. На лекции используются схемы, рисунки, чертежи и т.п., к подготовке которых привлекаются обучающиеся. Проведение лекции сводится к связному развернутомукомментированию преподавателем подготовленных наглядных пособий. При этом важна логика и ритм подачи учебного материала. Данный тип лекции хорошо использовать на введения студентов в новый раздел, тему, дисциплину.

Лекция с разбором конкретной ситуации, изложенной в устно или в виде короткого диафильма, видеозаписи и т.п.; студенты совместно анализируют и обсуждают представленный материал.

- **2. САМОСТОЯТЕЛЬНАЯ РАБОТА** (СР) изучение студентами теоретического материала, подготовка к лекциям, лабораторным работам, практическим и семинарским занятиям, оформление конспектов лекций, написание рефератов, отчетов, курсовых работ, проектов, работа в электронной образовательной среде и др. для приобретения новых теоретических и фактических знаний, теоретических и практических умений.
- **3. КОНСУЛЬТАЦИЯ, тьюторство** (Конс., тьют.) индивидуальное общение преподавателя со студентом, руководство его деятельностью с целью передачи опыта, углубления *теоретических* и фактических знаний, приобретенных студентом на лекциях, в результате самостоятельной работы, в процессе выполнения курсового проектирования и др.
- **4. ПРАКТИЧЕСКОЕ ЗАНЯТИЕ** (Пр. зан.) решение конкретных задач (математическое моделирование, расчеты и др.) на основании теоретических и фактических знаний, направленное в основном на приобретение новых фактических знаний и теоретических умений.
- **5. СЕМИНАР, коллоквиум** (Сем., колл.) систематизация теоретических и фактических знаний в определенном контексте (подготовка и презентация материала по определенной теме, обсуждение ее, формулирование выводов и заключения), направленная в основном на приобретение новых фактических знаний и теоретических умений.

Типы практических занятий, используемых при изучении дисциплины:

Кейс-метод. Его название происходит от английского слова «кейс» – папка, чемодан, портфель (в то же время «кейс» можно перевести и как «случай, ситуация»). Процесс обучения с использованием кейс—метода представляет собой имитацию реального события, сочетающую в целом адекватное отражение реальной действительности, небольшие материальные и временные затраты и вариативность обучения. Учебный материал подается студентам виде проблем (кейсов), а знания приобретаются в результате активной и творческой работы: самостоятельного осуществления целеполагания, сбора необходимой информации, ее анализа с разных точек зрения, выдвижения гипотезы, выводов, заключения, самоконтроля процесса получения знаний и его результатов.

Информационный проект – проект, направленный на стимулирование учебно-познавательной деятельности студента с выраженной эвристической направленностью (поиск, отбор и систематизация информации об объекте, оформление ее для презентации). Итоговым продуктом проекта может быть письменный реферат, электронный реферат с иллюстрациями, слайд-шоу, минифильм и т.д.

Основные виды образовательных технологий

Дистанционные образовательные технологии — образовательные технологии, реализуемые в основном с применением информационно-телекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников.

Примерами применения дистанционных образовательных технологий являются занятия, на которых обучающийся не присутствует (например, по болезни), но выполняет задания и общается с преподавателем по электронной почте, или преподаватель консультирует обучающихся во внеурочное время через блог или сайт.

Виды дистанционного обучения: лекции (сетевые или видеозапись), виртуальные экскурсии, практические работы (семинары), проектная деятельность, телеконференции со специалистами, форумы, обсуждения, дискуссии, консультации индивидуальные или групповые, тестирование.

Для проведения занятий с использованием электронного образования и дистанционных образовательных технологий используются следующие образовательные технологии и средства освоения дисциплины:

- электронная информационно-образовательная среда НИЯУ МИФИ Режим доступа https://eis.mephi.ru/;
- платформа для проведения on-line конференций и вебинаров ZOOM Режим доступа https://zoom.us/;
 - файлообменная система Google Диск Режим доступа https://drive.google.com/;
- система обмена текстовыми сообщениями для мобильных и иных платформ с поддержкой голосовой и видеосвязи WhatsApp, Телеграм;
 - социальная сеть ВКонтакте:
 - электронная почта преподавателей и студентов.

Кейсовая-технология основывается на использовании наборов (кейсов) текстовых, аудиовизуальных и мультимедийных учебно-методических материалов и их рассылке для самостоятельного изучения учащимся при организации регулярных консультаций у преподавателей.

Телевизионно-спутниковая технология основана на применении интерактивного телевидения: теле- и радиолекции, видеоконференции, виртуальные практические занятия и т.д.

Сетевые технологии используют телекоммуникационные сети для обеспечения учащихся учебно-методическим материалом и взаимодействия с различной степенью интерактивности между преподавателем и учащимся.

Информационные технологии – обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам (теоретически к неограниченному объему и скорости доступа), увеличения контактного взаимодействия с преподавателем, построения индивидуальных траекторий подготовки и объективного контроля и мониторинга знаний студентов.

Работа в команде — совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путем творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности.

Case-study - анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений.

Игра – ролевая имитация студентами реальной профессиональной деятельности с выполнением функций специалистов на различных рабочих местах.

Проблемное обучение – стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.

Контекстное обучение — мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением. При этом знания, умения, навыки даются не как предмет для запоминания, а в качестве средства решения профессиональных задач.

Обучение на основе опыта – активизация познавательной деятельности студента за счет ассоциации и собственного опыта с предметом изучения.

Индивидуальное обучение — выстраивание студентом собственной образовательной траектории на основе формирования индивидуальной образовательной программы с учетом интересов студента.

Междисциплинарное обучение – использование знаний из разных областей, их группировка и концентрация в контексте решаемой задачи.

Опережающая самостоятельная работа – изучение студентами нового материала до его изучения в ходе аудиторных занятий.

5 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО И ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (АННОТАЦИЯ)

Контроль освоения дисциплины производится в соответствии с Положением о рейтинговой системе оценки знаний студентов ДИТИ НИЯУ МИФИ.

Входной контроль не предусмотрен.

Текущий контроль студентов производится в дискретные временные интервалы лектором и преподавателем (ями), ведущими лабораторные работы и практические занятия по дисциплине, в следующих формах: практические работы, информационный проект, коллоквиум, реферат

Коллоквиум является одним из средств текущего контроля, используются как метод оценивания уровня сформированности у обучающихся компетенции в процессе освоения дисциплины.

Коллоквиум рекомендуется использовать для проверки и оценивания знаний, умений и навыков студентов, полученных в ходе занятий по освоению определенной части учебного модуля «Основы радиационной безопасности». Коллоквиум проводится в виде письменного или устного опроса группы студентов из 10-15 человек во время аудиторной самостоятельной работы. В ходе коллоквиума для каждого студента предусмотрено по 3 вопроса. Максимальное количество баллов, которые может получить студент, участвуя в коллоквиуме, равно 5 баллам.

Во время проведения коллоквиума оценивается способность студента правильно сформулировать ответ, умение выражать свою точку зрения по данному вопросу, ориентироваться в терминологии и применять полученные в ходе лекций и практик знания.

Список возможных вопросов к коллоквиуму

Тема: «Магнитно-резонансная томография»

Этапы развития МРТ. Физические основы МРТ. Основные блоки МР-томографа Классификация МР томографов Построение изображения Основные импульсные последовательностиСпин-эхо последовательность. Последовательность быстрое спин-эхо Последовательность инверсия-восстановлениеПоследовательность градиентное эхоБыстрое градиентное эхоЭхо-планарное отображение-Магнитно-резонансная ангиография. Виды изображенийПоказатели качества изображения Артефакты МР-изображений Физиологические артефакты Артефакты, вызванные физическими явлениямиАртефакты, вызванные неисправностью оборудованияНеправильные действия оператора ЯМР спектроскопия Безопасность при проведении МРТ

Реферат

Рефераты используются как метод оценивания уровня сформированности у обучающихся компетенции в процессе освоения дисциплины.

Подготовка студентом реферата является одним из видов текущего контроля и оценки его знаний, умений и навыков, уровня сформированности компетенций при освоении учебного модуля «Основы радиационной безопасности».

Реферат является частью самостоятельной работы студента, но также используется как оценочное средство. В реферате студент излагает в электронном виде результаты теоретического анализа заранее полученной темы, а также собственный взгляд на исследуемый вопрос. Максимальное количество баллов за реферат -5 баллов.

Цель: тематика рефератов должна быть актуальной, соответствовать современному уровню и перспективам развития соответствующих областей науки, а по своему содержанию и направленности отвечать задачам подготовки высококвалифицированных специалистов.

Задача: раскрытие темы реферата и определения новизны в указанной области.

Примерный перечень тем реферата:

Интеграция систем обработки медицинских изображений и клинических систем.

Современные виды томографии.

Функциональная диагностика сосудов.

Преимущества ПЭТ/КТ при меньшей дозовой нагрузке.

Роль рентгенодиагностики в мире и России.

Физические основы диафаноскопии.

Томографическое исследование рассеивающих сред.

Оптическая микротомография

Голографическое и томографическое отображение информации.

Определение структуры объекта по рассеянному полю в голографии и томографии.

Вычислительные алгоритмы реконструктивной томографии.

Обработка изображений в пространстве Радона.

Проект

Проект является одним из видов текущего контроля и оценки его знаний, умений и навыков, уровня сформированности компетенций при освоении учебного модуля в процессе освоения дисциплины.

Это конечный продукт, получаемый в результате планирования и выполнения комплекса учебных и исследовательских заданий. Позволяет оценить умения обучающихся самостоятельно конструировать свои знания в процессе решения практических задач и проблем, ориентироваться в информационном пространстве и уровень сформированности аналитических, исследовательских навыков, навыков практического и творческого мышления. Может выполняться в индивидуальном порядке или группой обучающихся.

Цель: тематика проектов должна быть актуальной, соответствовать современному уровню и перспективам развития соответствующих областей науки, а по своему содержанию и направленности отвечать задачам подготовки высококвалифицированных специалистов.

Задача: раскрытие темы и определения новизны в указанной области.

Примерный список тем проектов:

Формирование изображений и понятие реконструкции изображений

Эвристические методы решения обратной задачи реконструкции изображений

Томографическая обработка изображений

Классическая томография

Голографическое и томографическое отображение информации

Оптическая томография

Практическое занятие

Практическая работа — это задание для студента, которое должно быть выполнено по теме, определенной преподавателем. Главная цель проведения практической работы заключается в выработке у студента практических умений, связанных с обобщением и интерпретацией тех или иных

научных материалов. Используются как метод оценивания уровня сформированности у обучающихся компетенций в процессе освоения дисциплины.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины.

Промежуточный контроль (аттестация) по дисциплине проводится в форме экзамена по графику экзаменационной сессии.

Экзамен является основной формой контроля и оценивания сформированности у обучающихся компетенций по результатам освоения дисциплины, проводится в следующих вариациях:

в устной форме по вопросам

в защите выбранной темы реферата или проекта.

Итоговая оценка определяется как сумма оценок, полученных в текущей аттестации и по результатам контрольного испытания. Проверка ответов и объявление результатов производится в день написания контрольного испытания. Результаты аттестации заносятся в экзаменационно-зачетную ведомость и зачетную книжку студента.

Студенты, не прошедшие промежуточную аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

Примерный перечень вопросов для подготовки:

Что такое диагностические изображения?

Перечислите современные медицинские методы визуализации

Чем определяется ценность выбранного метода визуализации?

Перечислите способы представления трехмерного пространства в медицинских диагностических изображениях

Каким образом формируется суммационное изображение?

Назовите характеристики диагностических изображений

Дайте определение термину «пространственное разрешение», используемому в области медицинской визуализации

Дайте определение термину «контраст», используемому в области медицинской

Что такое круговая геометрия измерений?

Запишите и поясните преобразование Радона двумерной функции

Перечислите методы обращения интегрального преобразования Радона

В чем суть метода ро-фильтрации?

Перечислите последовательность действий, которые необходимо выполнить при реализации метода Фурье синтеза

Что представляет собой обратная проекция?

Каковы достоинства и недостатки метода, предложенного Аланом Кормаком?

Виды электромагнитных колебаний, применяемых в лучевой диагностике

Устройство и принцип работы рентгеновской трубки

Фонд оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить результаты обучения по данной дисциплине, приведен в Приложении.

6 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Перечень основной и дополнительной учебной литературы

Таблица 6.1 – Обеспечение дисциплины основной и дополнительной литературой по дисциплине

No			Место	Наименова-	Год из-	Количество
Π/	Автор	Название	изда-	ние издатель-	дания	экземпляров
П			кин	ства	дания	экэсмияиров

		Oc	новная л	итература		
1	Беляев В.Н., Кли- манов В.А.	Физика ядерной медицины. Часть 2	Москва		2012	Режим доступа: https://reader.lanbook.com/bo ok/75873#1
2	Климанов В.А.	Физика ядерной меди- цины. Часть 1	Москва	Издательство НИЯУ МИФИ	2012	Режим доступа: https://reader.lanbook.com/bo ok/75874#1
3	Труфанов, Г. Е., Фо- кин, , В. А.	Магнитно-резонансная томография: руковод- ство для врачей	СПб	Фолиант	2007	http://www.iprbookshop.ru/6 0921.html
4	Труфанов, Г. Е., Рудь, С. Д.	Рентгеновская компью- терная томография: ру- ководство для врачей	СПб	Фолиант	2008	http://www.iprbookshop.ru/6 0943.html
5	Черняев А.П., Вол- ков Д.В., Лыкова Е.Н.	Физические методы визуализации в медицинской диагностике: Учеб. пособие	Москва	ООП физического факультета МГУ	2019	http://nuclphys.sinp.msu.ru/m pf/Vizualization.pdf
6	Илясов, Л. В.	Физические основы и технические средства медицинской визуализации: учебное пособие для вузов	СПб	Лань	2021	https://e.lanbook.com/book/171857
		Допол	нительн	ая литература		
1	Терещенко С.А.	Методы вычислительной томографии	Москва	ФИЗМАТ- ЛИТ	2004	Режим доступа: https://reader.lanbook.com/bo ok/59381#2
2	Марусина М.Я., Каз- начеева А.О.	Современные виды то-мографии. Учебное пособие	СПб	СПбГУ ИТМО	2006	https://books.ifmo.ru/file/pdf/ 118.pdf
3	Под ред. К. Хилла	Применение ультразвука в медицине: Физические основы: Пер. с англ.	Москва	Мир	1989	https://scask.ru/n_book_um.p hp

6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень рекомендуемых Интернет сайтов:

Полнотекстовая БД -

American Chemical Society http://pubs.acs.org/

American Institute of Physics http://scitation.aip.org/

American Physical Society (https://journals.aps.org/about

Annual Reviews Science Collection (http://www.annualreviews.org

Applied Science & Technology Source http://search.ebscohost.com

Institute of Physics (IOP) http://iopscience.iop.org/

Реферативная БД INSPEC. EBSCO publishing http://search.ebscohost.com/

Реферативная БД Scopus http://www.scopus.com

Реферативная БД Web of Science Core Collection http://apps.webofknowledge.com/

Научно-практический рецензируемый журнал «Медицинская визуализация»

https://medvis.vidar.ru/jour?locale=ru_RU

Таблица 6.2 – Рекомендуемые электронно-библиотечные системы

$N_{\underline{0}}$	Наименование ресурса	Тематика
1	Научная электронная библиотека https://elibrary.ru	Медицинская визуа-
2	Электронная библиотечная система издательства Лань, www.e.lanbook.com.	лизация, ультразву-
3	Фонд электронно-библиотечной системы образовательных и просветитель-	ковая диагностика,
	ских изданий Iqlib, www.Iqlib.ru	МРТ, ПЭТ, компью-
4	Образовательная платформа «Юрайт», https://urait.ru/	терная томография

5	Электронное периодическое издание «KnigaFund.Ru»,
	http://www.knigafund.ru/books/149292/read
6	Электронная библиотека История Росатома http://elib.biblioatom.ru/
7	Атомотека https://myatom.ru/
8	Znanium.com https://znanium.com/
10	Национальная электронная библиотека http://rusneb.ru/
11	Russian Science Citation Index (RSCI) clarivate.ru

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Таблица 6.3 – Перечень лицензионного и свободно распространяемого программного обеспечения

№	Наименование	Краткое описание
1	Windows 10 Pro	Операционная система
2	MS Office (Word, Excel, Power Point)	Пакет офисных приложений: оформление тек-
		ста, расчет, создание презентаций
3	Браузеры: Internet Explorer 10, Internet Explorer	Специальные программы для просмотра веб-
	9, Internet Explorer 8, FireFox 10, Safari 5, Google	страниц, поиска контента, файлов и их катало-
	Chrome 17	гов в Интернете
4	https://docs.google.com/ Документы, Таблицы,	оформление текста, расчет, создание презента-
	Формы, Презентации	ций
5	ONLYOFFICE Desktop Editors	Свободный Офисный Пакет: оформление тек-
		ста, расчет, создание презентаций
6	JPDF Viewer, Foxit Reader	просмотрщик PDF-файлов
7	Антиплагиат.ВУЗ	Интернет-сервис для вузов, предназначенный
		для оценки степени самостоятельности пись-
		менных работ обучающихся

Таблица 6.4 – Перечень профессиональных баз данных и информационных справочных систем

№	Наименование	Тематика	Электронный адрес
1	Гарант	правовая	httgs://www.garant.ru/
2	Консультант	правовая	httgs://www.consultant.ru/

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

№ п/ п	Наименование помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом, в том числе помещения для самостоятельной работы, с указанием перечня основного оборудования, учебно наглядных пособий и используемого программного обеспечения	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом (в случае реализации образовательной программы в сетевой форме дополнительно указывается наименование организации, с которой заключен договор)
1	Учебная аудитория для проведения учебных занятий № 216. посадочных мест — 5/18; площадь 52,1 кв.м. Специализированная мебель. учебная доска – 1 шт., стол студенческий – 14 шт., стол преподавательский – 2 шт., стол компьютерный – 1 шт., стулья – 32 шт., шкаф книжный – 3 шт., наглядные пособия. Технические средства обучения: компьютер (монитор, системный блок, клавиатура, мышка), экран, проектор, баня комбинированная водяная, весы лабораторные, влагомер ADS 100, дидактическая модель сердца, комплект	433507, Ульяновская область, г. Димитровград, ул. Куй- бышева, 294

ареометров для измерения плотностей жидкости, комплект для измерения жидких образцов, комплект для приготовления образцов в виде таблеток, микроскоп, модель гипертензии, модель головы и шеи, модель легкого с гортанью. модель мозга с артериями в основании головы, модель печени с желчным пузырем, поджелудоч. железой и двенадцатиперстной кишкой, модель пищеварительной системы, модель скелета "Ѕат" класса "люкс", подвешиваемая на 5рожковой роликовой стойке, модель срединного сечения головы, стерилизатор (ГП-40-3), фурье-спектрометр инфракрасный ФСМ 1201, центрифуга (ОЛЦ-3п), электронный 1 флоуриметр (Анализатор Флюорат -02-АБЛФ-Т с наливной кюветой Программное обеспечение: OC Windows 07

8 ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с:

- Конституцией Российской Федерации. Принята всенародным голосованием 12.12.1993 с изменениями, одобренными в ходе общероссийского голосования 01.07.2020 ст. 43 http://www.consultant.ru/document/cons_doc_LAW_28399/;
- Федеральным законом «Об образовании в Российской Федерации» от 29.12.2012 №273-ФЗ (ред. от 17.02.2021), ст. 5, 71, 79 http://www.consultant.ru/document/cons_doc_LAW_140174/;
- Федеральным законом от 24.11.1995 №181-Ф3 (ред. от 07.03.2017) «О социальной защите инвалидов в Российской Федерации» Глава III. Ст. 9. ,Ст. 11. Глава IV. Ст. 1 http://www.consultant.ru/document/cons doc LAW_8559/;
- Федеральным законом «О ратификации Конвенции о правах инвалидов» от 03.05.2012 №46-Ф3 http://www.consultant.ru/document/cons doc LAW 129200/;
- Порядком организации и осуществления образовательной деятельности по образовательным программам программам бакалавриата, программам специалитета, программам магистратуры (Приказ Минобрнауки РФ от 05.04.2017 № 301);
- Положением об организации обучения студентов-инвалидов и студентов с ограниченными возможностями здоровья в НИЯУ МИФИ, утвержденным 29.08.2017 г. https://mephi.ru/content/public/uploads/files/education/docs/pl 7.5-15_ver_2.2_0.pdf;
- Методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (приложение к письму Минобрнауки от 16 апреля 2014 г. №05-785) http://www.consultant.ru/document/cons_doc_LAW_159405/73804ce294dfe53d86ae9d22b5afde310dc506f7/;
- Требованиями к организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в профессиональных образовательных организациях, в том числе оснащенности образовательного процесса» (приложение к письму Минобрнауки от 18 марта 2014 г. №06-281) http://www.consultant.ru/document/cons doc LAW 57872/7d7f56523837be788b6cfa5578482a6b178918d3/.

Дополнения и изменения в рабочей программе дисциплины на 20_/20_ уч.г.

Внесенные изменения на 20__/20__ учебный год

В рабочую программу вносятся слинесения каких-либо изменений н		и делає	ется отметка о нецелес	ообразнос
Deferred the the war contemporal				
Рабочая программа пересмотрена	а на заседании кафедры			
(dama,	номер протокола заседания кафе	дры,	подпись з	ав. кафедрой)
СОГЛАСОВАНО:		•		
сот ласовано. Заведующий выпускающей кафе,	προŭ			
общей и медицинской физики	дрои			
наименование кафедры	личная п	одпись	расшифровка подписи	дата
Руководитель ООП,			- **	
	<u></u>			
ученая степень, должность	าบฯผสภา	одпись	пасшифровка подписи	дата